859 research outputs found

    Pedestrian dead reckoning employing simultaneous activity recognition cues

    Get PDF
    Cataloged from PDF version of article.We consider the human localization problem using body-worn inertial/magnetic sensor units. Inertial sensors are characterized by a drift error caused by the integration of their rate output to obtain position information. Because of this drift, the position and orientation data obtained from inertial sensors are reliable over only short periods of time. Therefore, position updates from externally referenced sensors are essential. However, if the map of the environment is known, the activity context of the user can provide information about his position. In particular, the switches in the activity context correspond to discrete locations on the map. By performing localization simultaneously with activity recognition, we detect the activity context switches and use the corresponding position information as position updates in a localization filter. The localization filter also involves a smoother that combines the two estimates obtained by running the zero-velocity update algorithm both forward and backward in time. We performed experiments with eight subjects in indoor and outdoor environments involving walking, turning and standing activities. Using a spatial error criterion, we show that the position errors can be decreased by about 85% on the average. We also present the results of two 3D experiments performed in realistic indoor environments and demonstrate that it is possible to achieve over 90% error reduction in position by performing localization simultaneously with activity recognition

    Scalable Group Secret Key Generation over Wireless Channels

    Full text link
    In this paper, we consider the problem of secret key generation for multiple parties. Multi-user networks usually require a trusted party to efficiently distribute keys to the legitimate users and this process is a weakness against eavesdroppers. With the help of the physical layer security techniques, users can securely decide on a secret key without a trusted party by exploiting the unique properties of the channel. In this context, we develop a physical layer group key generation scheme that is also based on the ideas of the analog function computation studies. We firstly consider the key generation as a function to be computed over the wireless channel and propose two novel methods depending on the users transmission capability (i.e. half-duplex and full-duplex transmissions). Secondly, we exploit the uniqueness of the prime integers in order to enable the simultaneous transmission of the users for key generation. As a result, our approach contributes to the scalability of the existing physical layer key generation algorithms since all users transmit simultaneously rather than using pairwise communications. We prove that our half-duplex network model reduces the required number of communications for group key generation down to a linear scale. Furthermore, the full-duplex network model reduces to a constant scale.Comment: 7 pages, 3 figure, transaction

    Employing active contours and artificial neural networks in representing ultrasonic range data

    Get PDF
    Active snake contours and Kohonen's self-organizing feature maps (SOM) are considered for efficient representation and evaluation of the maps of an environment obtained with different ultrasonic arc map (UAM) processing techniques. The mapping results are compared with a reference map acquired with a very accurate laser system. Both approaches are convenient ways of representing and comparing the map points obtained with different techniques among themselves, as well as with an absolute reference. Snake curve fitting results in more accurate maps than SOM since it is more robust to outliers. The two methods are sufficiently general that they can be applied to discrete point maps acquired with other mapping techniques and other sensing modalities as well. copyright by EURASIP

    Human activity recognition using inertial/magnetic sensor units

    Get PDF
    This paper provides a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), the least-squares method (LSM), the k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). Daily and sports activities are classified using five sensor units worn by eight subjects on the chest, the arms, and the legs. Each sensor unit comprises a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetometer. Principal component analysis (PCA) and sequential forward feature selection (SFFS) methods are employed for feature reduction. For a small number of features, SFFS demonstrates better performance and should be preferable especially in real-time applications. The classifiers are validated using different cross-validation techniques. Among the different classifiers we have considered, BDM results in the highest correct classification rate with relatively small computational cost. © 2010 Springer-Verlag Berlin Heidelberg

    Performance evaluation of ultrasonic arc map processing techniques by active snake contours

    Get PDF
    Active snake contours are considered for representing the maps of an environment obtained by different ultrasonic arc map (UAM) processing techniques efficiently. The mapping results are compared with the actual map of the room obtained with a very accurate laser system. This technique is a convenient way to represent and compare the map points obtained with different techniques among themselves, as well as with an absolute reference. It is also applicable to map points obtained with other mapping techniques. © 2008 Springer-Verlag Berlin Heidelberg

    Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps

    Get PDF
    Active snake contours and Kohonen's self-organizing feature maps (SOMs) are employed for representing and evaluating discrete point maps of indoor environments efficiently and compactly. A generic error criterion is developed for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. Guidelines for selecting and optimizing the parameters of active snake contours and SOMs are provided using uniform sampling of the parameter space and particle swarm optimization (PSO A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities. © Springer Science+Business Media, LLC 2010

    Representing ultrasonic maps using active snake contours

    Get PDF
    [No abstract available

    Evaluation of localisation of mandibular foramen in patients with mandibular third molar teeth using cone-beam computed tomography

    Get PDF
    Background: It is important to know the correct anatomical location of the mandibular foramen to obtain successful anaesthesia of inferior alveolar nerve and to prevent injury to the mandibular vessels and nerve, during a variety of oral and maxillofacial surgical procedures. The aim of this study is to evaluate localisation of the mandibular foramen in patients with the third molars using cone-beam computed tomography (CBCT). Materials and methods: Cone-beam computed tomography was used to determine the location of the mandibular foramen in 67 patients (totally 99 sides) with unilateral or bilateral impacted mandibular third molars. Results: The distance from the posterior border of the mandibular ramus to mandibular foramen did not differ significantly among the other angulations. But the difference between vertical and horizontal angulation of the impactedmandibular third molars according to ‘fd’ values (the shortest distance between mandibular foramen and the posterior border of mandibular ramus) was found to be statistically significant (p < 0.05). Conclusions: The present study provides new information to the literature concerning relationship between the location of the mandibular foramen and the mandibular third molars

    Sensor-activity relevance in human activity recognition with wearable motion sensors and mutual information criterion

    Get PDF
    Selecting a suitable sensor configuration is an important aspect of recognizing human activities with wearable motion sensors. This problem encompasses selecting the number and type of the sensors, configuring them on the human body, and identifying the most informative sensor axes. In earlier work, researchers have used customized sensor configurations and compared their activity recognition rates with those of others. However, the results of these comparisons are dependent on the feature sets and the classifiers employed. In this study, we propose a novel approach that utilizes the time-domain distributions of the raw sensor measurements. We determine the most informative sensor types (among accelerometers, gyroscopes, and magnetometers), sensor locations (among torso, arms, and legs), and measurement axes (among three perpendicular coordinate axes at each sensor) based on the mutual information criterion. © 2013 Springer International Publishing
    corecore